A Step from Probabilistic Programming to Cognitive Architectures

نویسنده

  • Alexey Potapov
چکیده

Probabilistic programming is considered as a framework, in which basic components of cognitive architectures can be represented in unified and elegant fashion. At the same time, necessity of adopting some component of cognitive architectures for extending capabilities of probabilistic programming languages is pointed out. In particular, implicit specification of generative models via declaration of concepts and links between them is proposed, and usefulness of declarative knowledge for achieving efficient inference is briefly dis-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Adaptive, Interactive Virtual Humans in Sigma

Sigma is a nascent cognitive architecture/system that combines concepts from graphical models with traditional symbolic architectures. Here an initial Sigma-based virtual human (VH) is introduced that combines probabilistic reasoning, rule-based decision-making, Theory of Mind, Simultaneous Localization and Mapping and reinforcement learning in a unified manner. This nonmodular unification of d...

متن کامل

Using Probabilistic-Risky Programming Models in Identifying Optimized Pattern of Cultivation under Risk Conditions (Case Study: Shoshtar Region)

Using Telser and Kataoka models of probabilistic-risky mathematical programming, the present research is to determine the optimized pattern of cultivating the agricultural products of Shoshtar region under risky conditions. In order to consider the risk in the mentioned models, time period of agricultural years 1996-1997 till 2004-2005 was taken into account. Results from Telser and Kataoka mod...

متن کامل

مدل عملکردی تحلیلی FPGA برای پردازش با قابلیت پیکربندی مجدد

Optimizing FPGA architectures is one of the key challenges in digital design flow. Traditionally, FPGA designers make use of CAD tools for evaluating architectures in terms of the area, delay and power. Recently, analytical methods have been proposed to optimize the architectures faster and easier. A complete analytical power, area and delay model have received little attention to date. In addi...

متن کامل

Augur: Data-Parallel Probabilistic Modeling

Implementing inference procedures for each new probabilistic model is timeconsuming and error-prone. Probabilistic programming addresses this problem by allowing a user to specify the model and then automatically generating the inference procedure. To make this practical it is important to generate high performance inference code. In turn, on modern architectures, high performance requires para...

متن کامل

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

It is time-consuming and error-prone to implement inference procedures for each new probabilistic model. Probabilistic programming addresses this problem by allowing a user to specify the model and having a compiler automatically generate an inference procedure for it. For this approach to be practical, it is important to generate inference code that has reasonable performance. In this paper, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.01180  شماره 

صفحات  -

تاریخ انتشار 2016